Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 778
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702777

RESUMEN

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Células Endoteliales de la Vena Umbilical Humana , Canales Iónicos , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Diabetes Mellitus Experimental/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Glucemia/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Mecanotransducción Celular , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/deficiencia , Células Cultivadas , Proliferación Celular , Apoptosis , Masculino , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Movimiento Celular , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Ratones , Estreptozocina , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética
2.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664681

RESUMEN

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Movimiento Celular , Proliferación Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor de Transcripción STAT3 , Transducción de Señal , Remodelación Vascular , Factor de Transcripción STAT3/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Animales , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Fosforilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/genética , Masculino , Células Cultivadas , Ratones Noqueados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Ratones Endogámicos C57BL , Productos Finales de Glicación Avanzada/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(12): e491-e508, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37795615

RESUMEN

BACKGROUND: APN (adiponectin) and APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) are potent vasculoprotective molecules, and their deficiency (eg, hypoadiponectinemia) contributes to diabetic vascular complications. However, the molecular mechanisms that govern their vasculoprotective genes as well as their alteration by diabetes remain unknown. METHODS: Diabetic medium-cultured rat aortic endothelial cells, mouse aortic endothelial cells from high-fat-diet animals, and diabetic human aortic endothelial cells were used for molecular/cellular investigations. The in vivo concept-prove demonstration was conducted using diabetic vascular injury and diabetic hindlimb ischemia models. RESULTS: In vivo animal experiments showed that APN replenishment caused APPL1 nuclear translocation, resulting in an interaction with HDAC (histone deacetylase) 2, which inhibited HDAC2 activity and increased H3Kac27 levels. Based on transcriptionome pathway-specific real-time polymerase chain reaction profiling and bioinformatics analysis, Angpt1 (angiopoietin 1), Ocln (occludin), and Cav1 (caveolin 1) were found to be the top 3 vasculoprotective genes suppressed by diabetes and rescued by APN in an APPL1-dependent manner. APN reverses diabetes-induced inhibition of Cav1 interaction with APPL1. APN-induced Cav1 expression was not affected by Angpt1 or Ocln deficiency, whereas APN-induced APPL1 nuclear translocation or upregulation of Angpt1/Ocln expression was abolished in the absence of Cav1 both in vivo and in vitro, suggesting Cav1 is upstream molecule of Angpt1/Ocln in response to APN administration. Chromatin immunoprecipitation-qPCR (quantitative polymerase chain reaction) demonstrated that APN caused significant enrichment of H3K27ac in Angpt1 and Ocln promoter region, an effect blocked by APPL1/Cav1 knockdown or HDAC2 overexpression. The protective effects of APN on the vascular system were attenuated by overexpression of HDAC2 and abolished by knocking out APPL1 or Cav1. The double knockdown of ANGPT1/OCLN blunted APN vascular protection both in vitro and in vivo. Furthermore, in diabetic human endothelial cells, HDAC2 activity is increased, H3 acetylation is decreased, and ANGPT1/OCLN expression is reduced, suggesting that the findings have important translational implications. CONCLUSIONS: Hypoadiponectinemia and dysregulation of APPL1-mediated epigenetic regulation are novel mechanisms leading to diabetes-induced suppression of vasculoprotective gene expression. Diabetes-induced pathological vascular remodeling may be prevented by interventions promoting APPL1 nuclear translocation and inhibiting HDAC2.


Asunto(s)
Diabetes Mellitus , Angiopatías Diabéticas , Lesiones del Sistema Vascular , Animales , Humanos , Ratones , Ratas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adiponectina/metabolismo , Diabetes Mellitus/genética , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/prevención & control , Angiopatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Epigénesis Genética , Lesiones del Sistema Vascular/genética
4.
Diabetes Metab ; 49(5): 101472, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37678759

RESUMEN

AIM: To examine the associations between serum albumin and the incidences of diabetes and diabetic microvascular complications in participants of the UK Biobank cohort. METHODS: There were 398,146 participants without diabetes and 30,952 patients with diabetes from the UK Biobank cohort included in this study. Multivariate-adjusted Cox proportional hazard models were used to analyze the association of albumin with the incidences of diabetes and diabetic microvascular complications. Mendelian randomization (MR) analysis was used to determine the genetic relationships between serum albumin and diabetes. RESULTS: After a median 12.90 years follow-up, 14,710 participants developed incident diabetes (58.83 ± 7.52 years, 56.10% male). After multivariate adjustment, serum albumin was inversely associated with incident diabetes: hazard ratio (HR) [95% confidence interval] per 10 g/l increase 0.88 [0.82;0.94]. MR analyses suggested a potential genetic influence of serum albumin on diabetes in both the UK Biobank and the FinnGen consortium: odds ratios (ORs) [95% confidence interval per 1 g/l increase 0.99 [0.98;1.00] and 0.78 [0.67;0.92], respectively. In patients with diabetes, higher serum albumin levels were significantly associated with lower risk for diabetic microvascular complications. Specifically, per 10 g/l increase in serum albumin, the HRs for diabetic nephropathy, ophthalmopathy, and neuropathy were 0.42 [0.30;0.58], 0.61 [0.52;0.72], and 0.67 [0.51;0.88], respectively. CONCLUSION: In this large prospective study, serum levels of albumin were inversely associated with the incidences of diabetes and diabetic microvascular complications. These findings underscore the importance of maintaining optimal nutrient status in reducing the risk of diabetes and its complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Nefropatías Diabéticas , Humanos , Masculino , Femenino , Estudios Prospectivos , Albúmina Sérica , Bancos de Muestras Biológicas , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/complicaciones , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/complicaciones , Reino Unido/epidemiología , Factores de Riesgo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética
5.
J Clin Endocrinol Metab ; 109(1): e163-e174, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37552780

RESUMEN

CONTEXT: MicroRNA-191-5p regulates key cellular processes involved in the pathogenesis of diabetic complications such as angiogenesis, extracellular matrix deposition, and inflammation. However, no data on circulating microRNA-191-5p in the chronic complications of diabetes are available. OBJECTIVE: To assess whether serum levels of microRNA-191-5p were associated with micro- and macrovascular disease in a large cohort of subjects with type 1 diabetes mellitus (DM1) from the EURODIAB Prospective Complication Study. DESIGN AND SETTING: Levels of microRNA-191-5p were measured by quantitative PCR in 420 patients with DM1 recruited as part of the cross-sectional analysis of the EURODIAB Prospective Complication Study. Cases (n = 277) were subjects with nephropathy and/or retinopathy and/or cardiovascular disease (CVD). Controls (n = 143) were patients without complications. Logistic regression analysis was performed to evaluate the potential independent association of microRNA-191-5p levels with chronic complications of diabetes. RESULTS: Levels of microRNA-191-5p were significantly reduced (P < .001) in cases compared with controls even after adjustment for age, sex, and diabetes duration. Logistic regression analysis revealed that microRNA-191-5p was negatively associated with a 58% reduced odds ratio (OR) of chronic diabetes complications, specifically CVD, micro-macroalbuminuria, and retinopathy (OR, 0.42; 95% CI, 0.23-0.77), independent of age, sex, physical activity, educational levels, diabetes duration, glycated hemoglobin, total insulin dose, hypertension, smoking, total cholesterol, albumin excretion rate, estimated glomerular filtration rate, serum vascular cell adhesion molecule-1, and tumor necrosis factor-α. Analyses performed separately for each complication demonstrated a significant independent association with albuminuria (OR, 0.36; 95% CI, (0.18-0.75) and CVD (OR, 0.34; 95% CI, 0.16-0.70). CONCLUSIONS: In DM1 subjects, microRNA-191-5p is inversely associated with vascular chronic complications of diabetes.


Asunto(s)
Enfermedades Cardiovasculares , Complicaciones de la Diabetes , Diabetes Mellitus Tipo 1 , Angiopatías Diabéticas , Retinopatía Diabética , MicroARNs , Enfermedades de la Retina , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Factores de Riesgo , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/genética , Estudios Prospectivos , Estudios Transversales , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Enfermedades de la Retina/complicaciones , Albuminuria/etiología , Retinopatía Diabética/etiología , Retinopatía Diabética/genética
6.
Redox Biol ; 64: 102781, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321060

RESUMEN

Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.


Asunto(s)
Diabetes Mellitus , Angiopatías Diabéticas , Nefropatías Diabéticas , Humanos , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/genética , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética
7.
J Diabetes Complications ; 37(5): 108415, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989867

RESUMEN

AIMS: To construct a simple and feasible rat model to mimic diabetic vasculopathy by chronic injection of advanced glycation end products (AGEs) and further determine the role of profilin-1 in vasculopathy in AGE-injection rats. METHODS: Sprague-Dawley rats were injected with AGEs-BSA (25 mg/kg/day) for 0, 20, 30, 40, and 60 days by caudal vein. Then, the morphological changes in the aorta, heart, and kidney and the expression of profilin-1 were assessed. In cultured endothelial cells, shRNA profilin-1 was used to clarify the role of profilin-1 in AGEs-induced vascular endothelial lesions and inflammatory reactions. RESULTS: The aorta, heart, and kidney of the AGE-injection rats had obvious morphological changes. Also, the indicators of vascular remodeling in the aorta significantly increased, accompanied by the increased expression of profilin-1 in the aorta, heart, and kidney and polysaccharide content on the kidney basement membrane. In addition, the protein level of profilin-1 was markedly upregulated in the aorta of AGEs-injected rats and endothelial cells incubated with AGEs. shRNA profilin-1 markedly attenuated the upregulated expression of profilin-1, receptor for AGEs (RAGE), and NF-κB in endothelial cells incubated with AGEs, as well as reduced the high levels of ICAM-1, IL-8, TNF-α, ROS, and apoptosis induced by AGEs. CONCLUSIONS: Exogenous AGEs can mimic diabetic vasculopathy in vivo to some extent and increase profilin-1 expression in the target organs of diabetic complications. Blockade of profilin-1 attenuates vascular lesions and inflammatory reactions, suggesting its critical role in the metabolic memory mediated by AGEs.


Asunto(s)
Angiopatías Diabéticas , Productos Finales de Glicación Avanzada , Ratas , Animales , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Células Endoteliales/metabolismo , Ratas Sprague-Dawley , Profilinas/genética , Profilinas/metabolismo , FN-kappa B/metabolismo , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , ARN Interferente Pequeño/metabolismo
8.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719373

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as key mediators of regulated gene expression in diverse biologic contexts, including cardiovascular disease. In this issue of the JCI, Tang, Luo, and colleagues explored the contributions of lncRNAs in diabetic vasculopathy. The authors identified the lncRNA LEENE as a key mediator of angiogenesis and ischemic response. In a model of diabetic peripheral arterial disease, loss of LEENE led to impaired vascular perfusion, while its overexpression rescued the ischemic defect. The authors used unbiased chromatin affinity assays to decipher LEENE's interactome and mode of action. These findings offer insights as to why patients with diabetes are uniquely susceptible to developing peripheral vascular disease and fill important gaps in our understanding of mechanisms that connect metabolic dysregulation with impaired angiogenesis.


Asunto(s)
Angiopatías Diabéticas , Células Endoteliales , ARN Largo no Codificante , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 989844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568089

RESUMEN

Type 2 diabetes mellitus (T2DM) causes peripheral vascular disease because of which several blood-borne factors, including vital nutrients fail to reach the affected tissue. Tissue epigenome is sensitive to chronic hyperglycemia and is known to cause pathogenesis of micro- and macrovascular complications. These vascular complications of T2DM may perpetuate the onset of organ dysfunction. The burden of diabetes is primarily because of a wide range of complications of which nonhealing diabetic ulcers represent a major component. Thus, it is imperative that current research help recognize more effective methods for the diagnosis and management of early vascular injuries. This review addresses the significance of epigenetic processes such as DNA methylation and histone modifications in the evolution of macrovascular and microvascular complications of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Enfermedades Vasculares , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/complicaciones , Epigénesis Genética , Metilación de ADN , Enfermedades Vasculares/complicaciones
10.
Wiad Lek ; 75(4 pt 2): 1002-1008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633333

RESUMEN

OBJECTIVE: The aim: To establish the role of allelic polymorphisms NOS3-T-786C, MTHFR-C667T, P2RY12--744C, (GPIbα)-C482T in the development of vascular lesions in patients with hypertension and diabetes mellitus type 2. PATIENTS AND METHODS: Materials and methods: The study included 100 patients with hypertension and diabetes mellitus type 2 (main group) and 50 patients without type 2 diabetes (control group). Patients underwent echocardiography, color duplex scanning of extracranial, brachiocephalic and femoral vessels. The distribution of allelic polymorphisms was investigated by isolation DNA from leukocytes and polymerase chain reaction (PCR). RESULTS: Results: The risk of vascular damages increases 2-fold when carrying all 4 risk alleles in monozygotic genotypes of polymorphic loci in patients with hypertension with concomitant type 2 diabetes (p<0,05). In gene-gene interaction, the values of contributions and directions of interaction between alleles of polymorphic loci are established (p<0,05). Genes create a paired hierarchy of interaction according to their functional activity; the largest contribution to the probable vascular damage depends on the allelic polymorphism NOS3-786CT (p<0,05), the lowest - on the allelic polymorphism P2RY12-744CC (H2H2). The genetic polymorphism of the MTHFR gene is independent of the influence of other studied polymorphisms (p<0,05); the genes P2RY12-744CT and GPIbα 482CT act synergistically with the gene NOS3-786CT, being in a weak negative interaction with each other. CONCLUSION: Conclusions: Phenotypic manifestations of endothelial dysfunction may be modified by allelic polymorphism of genes associated with endothelial and platelet functions with the risk of vascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Hipertensión , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/genética , Humanos , Hipertensión/complicaciones , Hipertensión/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Óxido Nítrico Sintasa de Tipo III/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Polimorfismo Genético , Receptores Purinérgicos P2Y12/genética , Factores de Riesgo
11.
J Vasc Res ; 59(4): 251-260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378543

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Retinopatía Diabética , Hiperglucemia , Animales , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/genética , Humanos , Hiperglucemia/complicaciones , Pez Cebra/genética
12.
Diabetes ; 71(2): 285-297, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753800

RESUMEN

Red blood cells (RBC) act as mediators of vascular injury in type 2 diabetes mellitus (T2DM). miR-210 plays a protective role in cardiovascular homeostasis and is decreased in whole blood of T2DM mice. We hypothesized that downregulation of RBC miR-210 induces endothelial dysfunction in T2DM. RBC were coincubated with arteries and endothelial cells ex vivo and transfused in vivo to identify the role of miR-210 and its target protein tyrosine phosphatase 1B (PTP1B) in endothelial dysfunction. RBC from patients with T2DM and diabetic rodents induced endothelial dysfunction ex vivo and in vivo. miR-210 levels were lower in human RBC from patients with T2DM (T2DM RBC) than in RBC from healthy subjects. Transfection of miR-210 in human T2DM RBC rescued endothelial function, whereas miR-210 inhibition in healthy subjects RBC or RBC from miR-210 knockout mice impaired endothelial function. Human T2DM RBC decreased miR-210 expression in endothelial cells. miR-210 expression in carotid artery plaques was lower in T2DM patients than in patients without diabetes. Endothelial dysfunction induced by downregulated RBC miR-210 involved PTP1B and reactive oxygen species. miR-210 mimic attenuated endothelial dysfunction induced by RBC via downregulating vascular PTP1B and oxidative stress in diabetic mice in vivo. These data reveal that the downregulation of RBC miR-210 is a novel mechanism driving the development of endothelial dysfunction in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Endotelio Vascular/fisiopatología , Eritrocitos/metabolismo , MicroARNs/genética , Animales , Estudios de Casos y Controles , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Endotelio Vascular/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
13.
Microvasc Res ; 139: 104272, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699845

RESUMEN

Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor ß (PPARß) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARß in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARß and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARß agonist. Both GSK0660 (PPARß antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARß in high glucose-impaired endothelial function in rat aorta. PPARß-nitrative stress may hold potential in treating vascular complications from DM.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Angiopatías Diabéticas/metabolismo , Células Endoteliales/efectos de los fármacos , Glucosa/toxicidad , Hiperglucemia/metabolismo , Estrés Nitrosativo/efectos de los fármacos , PPAR-beta/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/fisiopatología , Regulación hacia Abajo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Hiperglucemia/genética , Hiperglucemia/patología , Hiperglucemia/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , PPAR-beta/genética , Ratas Sprague-Dawley , Transducción de Señal , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasodilatación/efectos de los fármacos
14.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830301

RESUMEN

Hypoglycemia has been recognized as a risk factor for diabetic vascular complications and cognitive decline, but the molecular mechanisms of the effect of hypoglycemia on target organs are not fully understood. In this work, gene networks of hypoglycemia and cardiovascular disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, cognitive decline, and Alzheimer's disease were reconstructed using ANDSystem, a text-mining-based tool. The gene network of hypoglycemia included 141 genes and 2467 interactions. Enrichment analysis of Gene Ontology (GO) biological processes showed that the regulation of insulin secretion, glucose homeostasis, apoptosis, nitric oxide biosynthesis, and cell signaling are significantly enriched for hypoglycemia. Among the network hubs, INS, IL6, LEP, TNF, IL1B, EGFR, and FOS had the highest betweenness centrality, while GPR142, MBOAT4, SLC5A4, IGFBP6, PPY, G6PC1, SLC2A2, GYS2, GCGR, and AQP7 demonstrated the highest cross-talk specificity. Hypoglycemia-related genes were overrepresented in the gene networks of diabetic complications and comorbidity; moreover, 14 genes were mutual for all studied disorders. Eleven GO biological processes (glucose homeostasis, nitric oxide biosynthesis, smooth muscle cell proliferation, ERK1 and ERK2 cascade, etc.) were overrepresented in all reconstructed networks. The obtained results expand our understanding of the molecular mechanisms underlying the deteriorating effects of hypoglycemia in diabetes-associated vascular disease and cognitive dysfunction.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/genética , Biología Computacional/métodos , Minería de Datos/métodos , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/genética , Redes Reguladoras de Genes , Hipoglucemia/epidemiología , Hipoglucemia/genética , Comorbilidad , Bases de Datos Genéticas , Humanos , Mapas de Interacción de Proteínas/genética , Factores de Riesgo , Transducción de Señal/genética
15.
BMC Endocr Disord ; 21(1): 195, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592988

RESUMEN

BACKGROUND: The serine protease inhibitor-1 (SERPINE1) rs1799889 single nucleotide polymorphism (SNP) has been constantly associated with diabetes mellitus (DM) and its vascular complications. The aim of this meta-analysis was to evaluate this association with combined evidences. METHODS: The systematic search was performed for studies published up to March 2021 which assess the associations between SERPINE1 rs1799889 SNP and the risks of DM, diabetic retinopathy (DR), diabetic cardiovascular disease (CVD) and diabetic nephropathy (DN). Only case-control studies were identified, and the linkage between SERPINE1 rs1799889 polymorphism and diabetic vascular risks were evaluated using genetic models. RESULTS: 51 comparisons were enrolled. The results revealed a significant association with diabetes risk in overall population (allelic: OR = 1.34, 95 % CI = 1.14-1.57, homozygous: OR = 1.66, 95 % CI = 1.23-2.14, heterozygous: OR = 1.35, 95 % CI = 1.08-1.69, dominant: OR = 1.49, 95 % CI = 1.18-1.88, recessive: OR = 1.30, 95 % CI = 1.06-1.59) as well as in Asian descents (allelic: OR = 1.45, 95 % CI = 1.16-1.82, homozygous: OR = 1.88, 95 % CI = 1.29-2.75, heterozygous: OR = 1.47, 95 % CI = 1.08-2.00, dominant: OR = 1.64, 95 % CI = 1.21-2.24, recessive: OR = 1.46, 95 % CI = 1.09-1.96). A significant association was observed with DR risk (homozygous: OR = 1.25, 95 % CI = 1.01-1.56, recessive: OR = 1.20, 95 % CI = 1.01-1.43) for overall population, as for the European subgroup (homozygous: OR = 1.32, 95 % CI = 1.02-1.72, recessive: OR = 1.38, 95 % CI = 1.11-1.71). A significant association were shown with DN risk for overall population (allelic: OR = 1.48, 95 % CI = 1.15-1.90, homozygous: OR = 1.92, 95 % CI = 1.26-2.95, dominant: OR = 1.41, 95 % CI = 1.01-1.97, recessive: OR = 1.78, 95 % CI = 1.27-2.51) and for Asian subgroup (allelic: OR = 1.70, 95 % CI = 1.17-2.47, homozygous: OR = 2.46, 95 % CI = 1.30-4.66, recessive: OR = 2.24, 95 % CI = 1.40-3.59) after ethnicity stratification. No obvious association was implied with overall diabetic CVD risk in any genetic models, or after ethnicity stratification. CONCLUSIONS: SERPINE1 rs1799889 4G polymorphism may outstand for serving as a genetic synergistic factor in overall DM and DN populations, positively for individuals with Asian descent. The association of SERPINE1 rs1799889 SNP and DR or diabetic CVD risks was not revealed.


Asunto(s)
Angiopatías Diabéticas/genética , Inhibidor 1 de Activador Plasminogénico/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , China/epidemiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Angiopatías Diabéticas/epidemiología , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/genética , Retinopatía Diabética/epidemiología , Retinopatía Diabética/genética , Femenino , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Masculino , Factores de Riesgo
16.
Front Endocrinol (Lausanne) ; 12: 598008, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349728

RESUMEN

Fibroblast growth factor 21 (FGF21), is an emerging metabolic regulator mediates multiple beneficial effects in the treatment of metabolic disorders and related complications. Recent studies showed that FGF21 acts as an important inhibitor in the onset and progression of cardiovascular complications of diabetes mellitus (DM). Furthermore, evidences discussed so far demonstrate that epigenetic modifications exert a crucial role in the initiation and development of DM-related cardiovascular complications. Thus, epigenetic modifications may involve in the function of FGF21 on DM-induced cardiovascular complications. Therefore, this review mainly interprets and delineates the recent advances of role of FGF21 in DM cardiovascular complications. Then, the possible changes of epigenetics related to the role of FGF21 on DM-induced cardiovascular complications are discussed. Thus, this article not only implies deeper understanding of the pathological mechanism of DM-related cardiovascular complications, but also provides the possible novel therapeutic strategy for DM-induced cardiovascular complications by targeting FGF21 and related epigenetic mechanism.


Asunto(s)
Cardiomiopatías Diabéticas/genética , Epigénesis Genética , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Metilación de ADN/genética , Angiopatías Diabéticas/genética , Humanos , Modelos Biológicos
17.
Diabetes ; 70(10): 2353-2363, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353852

RESUMEN

Diabetes elevates endothelin-1 (ET-1) in the vitreous and enhances constriction of retinal venules to this peptide. However, mechanisms contributing to ET-1-induced constriction of retinal venules are incompletely understood. We examined roles of sodium-hydrogen exchanger 1 (NHE1), protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and extracellular calcium (Ca2+) in retinal venular constriction to ET-1 and the impact of diabetes on these signaling molecules. Retinal venules were isolated from control pigs and pigs with streptozocin-induced diabetes for in vitro studies. ET-1-induced vasoconstriction was abolished in the absence of extracellular Ca2+ and sensitive to c-Jun N-terminal kinase (JNK) inhibitor SP600125 but unaffected by extracellular signal-regulated kinase (ERK) inhibitor PD98059, p38 kinase inhibitor SB203580, or broad-spectrum PKC inhibitor Gö 6983. Diabetes (after 2 weeks) enhanced venular constriction to ET-1, which was insensitive to PD98059 and Gö 6983 but was prevented by NHE1 inhibitor cariporide, SB203580, and SP600125. In conclusion, extracellular Ca2+ entry and activation of JNK, independent of ERK and PKC, mediate constriction of retinal venules to ET-1. Diabetes activates p38 MAPK and NHE1, which cause enhanced venular constriction to ET-1. Treatments targeting these vascular molecules may lessen retinal complications in early diabetes.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Endotelina-1/farmacología , Vena Retiniana , Intercambiador 1 de Sodio-Hidrógeno/fisiología , Vasoconstricción , Animales , Calcio/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Retinopatía Diabética/fisiopatología , Endotelina-1/sangre , Endotelina-1/fisiología , Imidazoles/farmacología , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/fisiología , Piridinas/farmacología , Vena Retiniana/efectos de los fármacos , Vena Retiniana/metabolismo , Vena Retiniana/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Intercambiador 1 de Sodio-Hidrógeno/genética , Porcinos , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Diabetes ; 70(10): 2391-2401, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34244239

RESUMEN

Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.


Asunto(s)
Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 1/genética , Proteínas de Unión a Ácidos Grasos/genética , Adulto , Alelos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Estudios de Cohortes , Dinamarca/epidemiología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/epidemiología , Angiopatías Diabéticas/epidemiología , Angiopatías Diabéticas/genética , Femenino , Finlandia/epidemiología , Regulación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo
19.
Mol Biol Rep ; 48(6): 5283-5290, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34232465

RESUMEN

BACKGROUND: Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic condition with various genetics and environmental influences that affects the capacity of the body to produce or use insulin resulting in hyperglycemia, which may lead to variable complications. It is one of the world's rising health problems. There is emerging evidence that some genetic polymorphisms can impact the risk of evolving T2DM. We try to determine the relationship of (rs7903146) variant of the Transcription factor 7-like 2 (TCF7L2) gene with T2DM and its microvascular complications. METHODS AND RESULTS: This case-control study included 180 subjects: 60 diabetic patients without complications, 60 diabetic patients with microvascular complications and 60 matched healthy controls. Genotypes of rs7903146 (C/T) SNP in the TCF7L2 gene were evaluated by real-time polymerase chain reaction via TaqMan allelic discrimination. Logistic regression was used to detect the most independent factor for development of diabetes and diabetic microvascular complications. Variant homozygous TT and heterozygous CT genotypes were significantly increased in diabetic without complications and diabetic with complications groups than controls (p = 0.003, 0.001) respectively. The T allele was more represented in both patient groups than controls with no significant difference between patient groups. TT genotype as well as T allele was significantly associated with increased T2DM risk. CONCLUSION: The T allele of rs7903146 polymorphism of TCF7L2 confers susceptibility to development of T2DM. However, no significant association was found for diabetic complications.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Adulto , Alelos , Estudios de Casos y Controles , Angiopatías Diabéticas/complicaciones , Angiopatías Diabéticas/genética , Egipto/epidemiología , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Microcirculación/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
20.
Front Endocrinol (Lausanne) ; 12: 598005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248833

RESUMEN

Diabetes mellitus (DM) is a highly prevalent chronic disease that is accompanied with serious complications, especially cardiac and vascular complications. Thus, there is an urgent need to identify new strategies to treat diabetic cardiac and vascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) has been verified as a crucial target for the prevention and treatment of diabetic complications. The function of NRF2 in the treatment of diabetic complications has been widely reported, but the role of NRF2-related epigenetic modifications remains unclear. The purpose of this review is to summarize the recent advances in targeting NRF2-related epigenetic modifications in the treatment of cardiac and vascular complications associated with DM. We also discuss agonists that could potentially regulate NRF2-associated epigenetic mechanisms. This review provides a better understanding of strategies to target NRF2 to protect against DM-related cardiac and vascular complications.


Asunto(s)
Angiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Epigénesis Genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Animales , Angiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/genética , Humanos , Factor 2 Relacionado con NF-E2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...